Displaying 101 – 120 of 333

Showing per page

Ideal arithmetic and infrastructure in purely cubic function fields

Renate Scheidler (2001)

Journal de théorie des nombres de Bordeaux

This paper investigates the arithmetic of fractional ideals of a purely cubic function field and the infrastructure of the principal ideal class when the field has unit rank one. First, we describe how irreducible polynomials decompose into prime ideals in the maximal order of the field. We go on to compute so-called canonical bases of ideals; such bases are very suitable for computation. We state algorithms for ideal multiplication and, in the case of unit rank one and characteristic at least five,...

Infinite rank of elliptic curves over a b

Bo-Hae Im, Michael Larsen (2013)

Acta Arithmetica

If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then E ( a b ) has infinite rank. If E is an elliptic curve in Legendre form, y² = x(x-1)(x-λ), where ℚ(λ) is a cubic field, then E ( K a b ) has infinite rank. If λ ∈ K has a minimal polynomial P(x) of degree 4 and v² = P(u) is an elliptic curve of positive rank over ℚ, we prove that y² = x(x-1)(x-λ) has infinite rank over K a b .

Currently displaying 101 – 120 of 333