On the space curves with the same dual varietey.
It is well known that versal deformations of nonsimple singularities depend on moduli. However they can be topologically trivial along some or all of them. The first step in the investigation of this phenomenon is to determine the versal discriminant (unstable locus), which roughly speaking is the obstacle to analytic triviality. The next one is to construct continuous liftable vector fields smooth far from the versal discriminant and to integrate them. In this paper we extend the results of J....
Let be an integral projective curve with . For all positive integers , let be the set of all with and spanned. Here we prove that if , then except in a few cases (essentially if is a double covering).
Sia una curva proeittiva e lissa, generali nel senso di Brill-Noether, indichiamo con l'insieme algebrico di quadrici di rango contenendo a . In questo lavoro noi descriviamo birazionalmente i componenti irriducibile di .