Displaying 61 – 80 of 115

Showing per page

Polarizations of Prym varieties for Weyl groups via abelianization

Herbert Lange, Christian Pauly (2009)

Journal of the European Mathematical Society

Let π : Z X be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply connected Lie group G . For any dominant weight λ consider the curve Y = Z / Stab ( λ ) . The Kanev correspondence defines an abelian subvariety P λ of the Jacobian of Y . We compute the type of the polarization of the restriction of the canonical principal polarization of Jac ( Y ) to P λ in some cases. In particular, in the case of the group E 8 we obtain families of Prym-Tyurin varieties. The main idea is the use of...

Preperiodic dynatomic curves for z z d + c

Yan Gao (2016)

Fundamenta Mathematicae

The preperiodic dynatomic curve n , p is the closure in ℂ² of the set of (c,z) such that z is a preperiodic point of the polynomial z z d + c with preperiod n and period p (n,p ≥ 1). We prove that each n , p has exactly d-1 irreducible components, which are all smooth and have pairwise transverse intersections at the singular points of n , p . We also compute the genus of each component and the Galois group of the defining polynomial of n , p .

Currently displaying 61 – 80 of 115