Displaying 81 – 100 of 115

Showing per page

Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004)

Gunther Cornelissen, Frans Oort (2005)

Rendiconti del Seminario Matematico della Università di Padova

In the week of August, 16th-20th of 2004, we organized a workshop about “Automorphisms of Curves” at the Lorentz Center in Leiden. The programme included two “problem sessions”. Some of the problems presented at the workshop were written down; this is our edition of these refereed and revised papers. Edited by Gunther Cornelissen and Frans Oort with contributions of I. Bouw; T. Chinburg; G. Cornelissen; C. Gasbarri; D. Glass; C. Lehr; M. Matignon; F. Oort; R. Pries; S. Wewers.

Projectively Normal Line Bundles on K-Gonal Curves and Rational Surfaces

Ballico, E., Keem, C. (2005)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 14H50.Here we prove the projective normality of several special line bundles on a general k-gonal curve.* The author was partially supported by MIURST and GNSAGA of INdAM (Italy) ** The author was partially supported by KOSEF # R01-2002-000-00051-0

Propriétés de descente des variétés à fibré cotangent ample

Mireille Martin-Deschamps (1984)

Annales de l'institut Fourier

On généralise ici un théorème de Grauert-Manin pour les courbes (problème de Mordell pour les corps de fonctions). Soit L un corps de fonctions algébriques sur un corps algébriquement clos k de caractéristique 0, X une variété propre et lisse sur L , dont le fibré cotangent Ω X / L 1 est ample; si l’ensemble de ses points rationnels est Zariski-dense, la variété X se redescend sur k .

Prym Subvarieties P λ of Jacobians via Schur correspondences between curves

Yashonidhi Pandey (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Let π : Z X denote a Galois cover of smooth projective curves with Galois group W a Weyl group of a simple Lie group G . For a dominant weight λ , we consider the intermediate curve Y λ = Z / Stab ( λ ) . One defines a Prym variety P λ Jac ( Y λ ) and we denote by ϕ λ the restriction of the principal polarization of Jac ( Y λ ) upon P λ . For two dominant weights λ and μ , we construct a correspondence S λ μ on Y λ × Y μ and calculate the pull-back of ϕ μ by S λ μ in terms of ϕ λ .

Currently displaying 81 – 100 of 115