Stable Reduction and Uniformization of Abelian Varieties I.
This note gives a survey of some recent results on the stable reduction of covers of the projective line branched at three points.
The subject of this article is the notion of -spin structure: a line bundle whose th power is isomorphic to the canonical bundle. Over the moduli functor of smooth genus- curves, -spin structures form a finite torsor under the group of -torsion line bundles. Over the moduli functor of stable curves, -spin structures form an étale stack, but both the finiteness and the torsor structure are lost.In the present work, we show how this bad picture can be definitely improved just by placing...
We give a complete classification of stable vector bundles over a cuspidal cubic and calculate their cohomologies. The technique of matrix problems is used, similar to [2, 3].
Per , vengono trovate curve liscie in di grado e genere aventi fibrato normale instabile con grado di instabilità , per ogni . Inoltre per , viene trovata una famiglia di curve in di grado e genere avente fibrato normale instabile con grado di instabilità e formante uno strato dello schema di Hilbert della giusta dimensione che è .
We construct a global system of real analytic coordinates on the real Teichmüller space of a compact real algebraic curve X, using so-called strict uniformization of the real algebraic curve X. A global coordinate system is then obtained via real quasiconformal deformations of the Kleinian subgroup of PGL2(R) obtained as a group of covering transformations of a strict uniformization of X.
Cet article est consacré à l’étude de la structure d’anneau du groupe de Grothendieck équivariant d’une courbe projective munie d’une action d’un groupe fini. On explicite cette structure en introduisant un groupe de classes de cycles à coefficients dans les caractères et une notion d’auto-intersection pour ces cycles. De ce résultat, on déduit une expression de la caractéristique d’Euler équivariante d’un -faisceau.