Displaying 121 – 140 of 2340

Showing per page

About G -bundles over elliptic curves

Yves Laszlo (1998)

Annales de l'institut Fourier

Let G be a complex algebraic group, simple and simply connected, T a maximal torus and W the Weyl group. One shows that the coarse moduli space M G ( X ) parametrizing S -equivalence classes of semistable G -bundles over an elliptic curve X is isomorphic to [ Γ ( T ) Z X ] / W . By a result of Looijenga, this shows that M G ( X ) is a weighted projective space.

ACM embeddings of curves of a quadric surface

S. Giuffrida, R. Maggioni, R. Re (2007)

Collectanea Mathematica

Let C be a smooth integral projective curve admitting two pencils ga1 and gb1 such that ga1 + gb1 is birational. We give conditions in order that the complete linear system |sga1 + rgb1| be normally generated or very ample.

Action du groupe de Galois sur les périodes de certaines courbes de Mumford

Christophe Brouillard (1994)

Journal de théorie des nombres de Bordeaux

Nous étudions l’action du groupe de Galois sur les périodes des courbes de Mumford qui sont des revêtements cycliques de K 1 . Lorsque le degré de ce revêtement est premier à la caractéristique résiduelle du corps de base, nous décomposons le réseau des périodes en une somme directe de modules monogènes, le nombre de ces modules monogènes étant déduit de la géométrie de la courbe (théorème 4). Ceci nous permet de donner une condition nécessaire et suffisante pour que le module des périodes soit libre...

Action of the Grothendieck-Teichmüller group on torsion elements of full Teichmüller modular groups in genus zero

Benjamin Collas (2012)

Journal de Théorie des Nombres de Bordeaux

In this paper we establish the action of the Grothendieck-Teichmüller group G T ^ on the prime order torsion elements of the profinite fundamental group π 1 g e o m ( 0 , [ n ] ) . As an intermediate result, we prove that the conjugacy classes of prime order torsion of π ^ 1 ( 0 , [ n ] ) are exactly the discrete prime order ones of the π 1 ( 0 , [ n ] ) .

Affine plane curves with one place at infinity

Masakazu Suzuki (1999)

Annales de l'institut Fourier

In this paper we give a new algebro-geometric proof to the semi-group theorem due to Abhyankar-Moh for the affine plane curves with one place at infinity and its inverse theorem due to Sathaye-Stenerson. The relations between various invariants of these curves are also explained geometrically. Our new proof gives an algorithm to classify the affine plane curves with one place at infinity with given genus by computer.

Currently displaying 121 – 140 of 2340