Plane curves whose singular points are cusps and triple coverings of p2.
The “linear orbit” of a plane curve of degree is its orbit in under the natural action of . In this paper we compute the degree of the closure of the linear orbits of most curves with positive dimensional stabilizers. Our tool is a nonsingular variety dominating the orbit closure, which we construct by a blow-up sequence mirroring the sequence yielding an embedded resolution of the curve. The results given here will serve as an ingredient in the computation of the analogous information for...
Let C be a smooth non-degenerate integral curve of degree d and genus g in over an algebraically closed field of characteristic zero. For each point P in let be the linear system on C induced by the hyperplanes through P. By one maps C onto a plane curve , such a map can be seen as a projection of C from P. If P is not the vertex of a cone of bisecant lines, then will have only finitely many singular points; or to put it slightly different: The secant scheme parametrizing divisors in...
We determine explicitly the set of algebraic points of degree at most 12 over ℚ on the Fermat quintic. This extends a previous result given by M. Klassen and P. Tzermias (1997), who described the set of algebraic points of degree at most 6 over ℚ.
There are many similarities between elliptic curves and formal groups of finite height. The points of order of a generic formal group are studied in order to develop the formal group analogue (applied to points of order ) of the concept of level structure and that of the -pairing known in elliptic curve theory.