Algebraic covers : field of moduli versus field of definition
A regular dessin d'enfant, in this paper, will be a pair (S,β), where S is a closed Riemann surface and β: S → ℂ̂ is a regular branched cover whose branch values are contained in the set {∞,0,1}. Let Aut(S,β) be the group of automorphisms of (S,β), that is, the deck group of β. If Aut(S,β) is Abelian, then it is known that (S,β) can be defined over ℚ. We prove that, if A is an Abelian group and Aut(S,β) ≅ A ⋊ ℤ₂, then (S,β) is also definable over ℚ. Moreover, if A ≅ ℤₙ, then we provide explicitly...
Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for 𝔤𝔩(n), with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and...