On abelian subvarieties generated by symmetric correspondences.
To any finite covering of degree between smooth complex projective manifolds, one associates a vector bundle of rank on whose total space contains . It is known that is ample when is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when is a simple abelian variety and does not factor through any nontrivial isogeny . This result is obtained by showing that is -regular in the...