A Characterization of Five-Dimensional Jacobian Varieties.
We prove that smooth projective varieties with equivalent derived categories have isogenous Picard varieties. In particular their irregularity and number of independent vector fields are the same. This implies that all Hodge numbers are the same for arbitrary derived equivalent threefolds, as well as other consequences of derived equivalence based on numerical criteria.
Let be a smooth curve defined over the fraction field of a complete discrete valuation ring . We study a natural filtration of the special fiber of the Néron model of the Jacobian of by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for over , and in particular are independent of the residue characteristic. Furthermore, we obtain information about...