On SL(2)-actions without 3-dimensional orbits
We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s -groups. This yields a description of spherical...
For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.
Here we focus on the geometry of , the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into and we give generators and relations of the rational Picard group of , extending previous work by A. Kouvidakis.