Page 1 Next

Displaying 1 – 20 of 83

Showing per page

Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Première partie : le groupe G 2

Wee Teck Gan, Jiu-Kang Yu (2003)

Bulletin de la Société Mathématique de France

Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels de type G 2 sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec les espaces symétriques réels et des espaces symétriques associés à G 2 réel et complexe.

Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Deuxième partie : les groupes F 4 et E 6

Wee Teck Gan, Jiu-Kang Yu (2005)

Bulletin de la Société Mathématique de France

Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels des type F 4 ou E 6 sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés.

Schubert varieties and representations of Dynkin quivers

Grzegorz Bobiński, Grzegorz Zwara (2002)

Colloquium Mathematicae

We show that the types of singularities of Schubert varieties in the flag varieties Flagₙ, n ∈ ℕ, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔸. Similarly, we prove that the types of singularities of Schubert varieties in products of Grassmannians Grass(n,a) × Grass(n,b), a, b, n ∈ ℕ, a, b ≤ n, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔻. We also show that...

Sekiguchi-Suwa theory revisited

Ariane Mézard, Matthieu Romagny, Dajano Tossici (2014)

Journal de Théorie des Nombres de Bordeaux

We present an account of the construction by S. Sekiguchi and N. Suwa of a cyclic isogeny of affine smooth group schemes unifying the Kummer and Artin-Schreier-Witt isogenies. We complete the construction over an arbitrary base ring. We extend the statements of some results in a form adapted to a further investigation of the models of the group schemes of roots of unity.

Seshadri constants and interpolation on commutative algebraic groups

Stéphane Fischler, Michael Nakamaye (2014)

Annales de l’institut Fourier

In this article we study interpolation estimates on a special class of compactifications of commutative algebraic groups constructed by Serre. We obtain a large quantitative improvement over previous results due to Masser and the first author and our main result has the same level of accuracy as the best known multiplicity estimates. The improvements come both from using special properties of the compactifications which we consider and from a different approach based upon Seshadri constants and...

Singular localization of 𝔤 -modules and applications to representation theory

Erik Backelin, Kobi Kremnitzer (2015)

Journal of the European Mathematical Society

We prove a singular version of Beilinson–Bernstein localization for a complex semi-simple Lie algebra following ideas from the positive characteristic case settled by [BMR06]. We apply this theory to translation functors, singular blocks in the Bernstein–Gelfand–Gelfand category O and Whittaker modules.

Currently displaying 1 – 20 of 83

Page 1 Next