Loading [MathJax]/extensions/MathZoom.js
Displaying 21 –
40 of
254
We study algebraic loop groups and affine Grassmannians in positive characteristic.
The main results are normality of Schubert-varieties, the construction of line-bundles on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack of torsors.
Les représentations irréductibles de sont décrites par les foncteurs de Schur, dont la composition définit le pléthysme. Sa compréhension est un problème important en théorie des invariants, ou bien en relation avec les représentations des groupes symétriques.Nous proposons dans cet article une approche géométrique du problème. Généralisant les plongements classiques de Veronese et de Segre, nous construisons des plongements de variétés de drapeaux dans d’autres variétés de drapeaux, sur lesquels...
Le théorème de Borel-Weil-Bott décrit la cohomologie des fibrés en droites sur les variétés de drapeaux. On généralise ici ce théorème à une plus grande classe de variétés projectives : les variétés magnifiques de rang minimal.
L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base de (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base de définie par Kostant et Kumar dans...
Currently displaying 21 –
40 of
254