Some results on the geometry of full flag manifolds and harmonic maps.
Let be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in as those intersecting only Bruhat cells in corresponding to involutions in the Weyl group of .
Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.
We prove that smooth subvarieties of codimension two in Grassmannians of lines of dimension at least six are rationally numerically subcanonical. We prove the same result for smooth quadrics of dimension at least six under some extra condition. The method is quite easy, and only uses Serre s construction, Porteous formula, and Hodge index theorem.
Soient un groupe algébrique complexe réductif et connexe, un sous-groupe de Borel de et un sous-groupe sphérique de . Soit un plongement -équivariant de . Nous savons que n’a qu’un nombre fini d’orbites dans ; nous montrons qu’il n’en a qu’un nombre fini dans . Soit l’adhérence dans d’une orbite de dans et l’adhérence d’une orbite de dans . Si est toroïdal, nous montrons que l’intersection est propre dans et la décrivons ensemblistement. Si de plus est lisse,...
La catégorie des modules de dimension finie sur la super algèbre de Lie n’est pas semi-simple. Elle se décompose en une infinité de blocs, dont on cherche depuis les travaux de Kac en 1977 à comprendre la structure. Vera Serganova apporte une réponse presque complète à ce problème, formulée selon le cercle d’idées introduites par Bernstein, Gelfand et Gelfand pour étudier la catégorie dans le cas classique ; ne disposant pas pour d’analogues des théorèmes de Kostant et de Borel-Weil-Bott,...