Displaying 61 – 80 of 92

Showing per page

Real algebraic threefolds I. Terminal singularities.

János Kollár (1998)

Collectanea Mathematica

The aim of this series of papers is to develop the theory of minimal models for real algebraic threefolds. The ultimate aim is to understand the topology of the set of real points of real algebraic threefolds. We pay special attention to 3–folds which are birational to projective space and, more generally, to 3–folds of Kodaira dimension minus infinity.present work contains the beginning steps of this program. First we classify 3–dimensional terminal singularities over any field of characteristic...

Regular analytic transformations of 2

Joseph Gubeladze (2000)

Annales Polonici Mathematici

Existence of loops for non-injective regular analytic transformations of the real plane is shown. As an application, a criterion for injectivity of a regular analytic transformation of 2 in terms of the Jacobian and the first and second order partial derivatives is obtained. This criterion is new even in the special case of polynomial transformations.

Sets with the Bernstein and generalized Markov properties

Mirosław Baran, Agnieszka Kowalska (2014)

Annales Polonici Mathematici

It is known that for C determining sets Markov’s property is equivalent to Bernstein’s property. We are interested in finding a generalization of this fact for sets which are not C determining. In this paper we give examples of sets which are not C determining, but have the Bernstein and generalized Markov properties.

Smoothing of real algebraic hypersurfaces by rigid isotopies

Alexander Nabutovsky (1991)

Annales de l'institut Fourier

Define for a smooth compact hypersurface M n of R n + 1 its crumpleness κ ( M n ) as the ratio diam R n + 1 ( M n ) / r ( M n ) , where r ( M n ) is the distance from M n to its central set. (In other words, r ( M n ) is the maximal radius of an open non-selfintersecting tube around M n in R n + 1 . ) We prove that any n -dimensional non-singular compact algebraic hypersurface of degree d is rigidly isotopic to an algebraic hypersurface of degree d and of crumpleness exp ( c ( n ) d α ( n ) d n + 1 ) . Here c ( n ) , α ( n ) depend only on n , and rigid isotopy means an isotopy passing only through hypersurfaces of degree...

Some remarks about proper real algebraic maps

L. Beretta, A. Tognoli (2000)

Bollettino dell'Unione Matematica Italiana

Nel presente lavoro si studiano le applicazioni polinomiali proprie φ : R n R q . In particolare si prova: 1) se φ : R n R è un'applicazione polinomiale tale che φ - 1 y è compatto per ogni y R , allora φ è propria; 2) se φ : R n R q è polinomiale a fibra compatta e φ R n è chiuso in R q allora φ è propria; 3) l'insieme delle applicazioni polinomiali proprie di R n in R q è denso, nella topologia C , nello spazio delle applicazioni C di R n in R q .

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) > 0 for x...

Sur la dynamique des difféomorphismes birationnels des surfaces algébriques réelles : ensemble de Fatou et lieu réel

Arnaud Moncet (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

On s’intéresse aux difféomorphismes birationnels des surfaces algébriques réelles qui possèdent une dynamique réelle simple et une dynamique complexe riche. On donne un exemple d’une telle transformation sur 1 × 1 , mais on montre qu’une telle situation est exceptionnelle et impose des conditions fortes à la fois sur la topologie du lieu réel et sur la dynamique réelle.

Tangential Markov inequality in L p norms

Agnieszka Kowalska (2015)

Banach Center Publications

In 1889 A. Markov proved that for every polynomial p in one variable the inequality | | p ' | | [ - 1 , 1 ] ( d e g p ) ² | | p | | [ - 1 , 1 ] is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs and surfaces,...

Currently displaying 61 – 80 of 92