Displaying 341 – 360 of 471

Showing per page

Reduction of semialgebraic constructible functions

Ludwig Bröcker (2005)

Annales Polonici Mathematici

Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.

Reduction theorems for the Strong Real Jacobian Conjecture

L. Andrew Campbell (2014)

Annales Polonici Mathematici

Implementations of known reductions of the Strong Real Jacobian Conjecture (SRJC), to the case of an identity map plus cubic homogeneous or cubic linear terms, and to the case of gradient maps, are shown to preserve significant algebraic and geometric properties of the maps involved. That permits the separate formulation and reduction, though not so far the solution, of the SRJC for classes of nonsingular polynomial endomorphisms of real n-space that exclude the Pinchuk counterexamples to the SRJC,...

Regular analytic transformations of 2

Joseph Gubeladze (2000)

Annales Polonici Mathematici

Existence of loops for non-injective regular analytic transformations of the real plane is shown. As an application, a criterion for injectivity of a regular analytic transformation of 2 in terms of the Jacobian and the first and second order partial derivatives is obtained. This criterion is new even in the special case of polynomial transformations.

Representations of non-negative polynomials having finitely many zeros

Murray Marshall (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Consider a compact subset K of real n -space defined by polynomial inequalities g 1 0 , , g s 0 . For a polynomial f non-negative on K , natural sufficient conditions are given (in terms of first and second derivatives at the zeros of f in K ) for f to have a presentation of the form f = t 0 + t 1 g 1 + + t s g s , t i a sum of squares of polynomials. The conditions are much less restrictive than the conditions given by Scheiderer in [11, Cor. 2.6]. The proof uses Scheiderer’s main theorem in [11] as well as arguments from quadratic form theory...

Representations of non-negative polynomials via KKT ideals

Dang Tuan Hiep (2011)

Annales Polonici Mathematici

This paper studies the representation of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its KKT (Karush-Kuhn-Tucker) ideal. Under the assumption that f satisfies the boundary Hessian conditions (BHC) at each zero of f in K, we show that f can be represented as a sum of squares (SOS) of real polynomials modulo its KKT ideal if f ≥ 0 on K.

Semi-algebraic complexity-additive complexity of diagonalization of quadratic forms.

Thomas Lickteig, Klaus Meer (1997)

Revista Matemática de la Universidad Complutense de Madrid

We study matrix calculations such as diagonalization of quadratic forms under the aspect of additive complexity and relate these complexities to the complexity of matrix multiplication. While in Bürgisser et al. (1991) for multiplicative complexity the customary thick path existence argument was sufficient, here for additive complexity we need the more delicate finess of the real spectrum (cf. Bochnak et al. (1987), Becker (1986), Knebusch and Scheiderer (1989)) to obtain a complexity relativization....

Semi-algebraic neighborhoods of closed semi-algebraic sets

Nicolas Dutertre (2009)

Annales de l’institut Fourier

Given a closed (not necessarly compact) semi-algebraic set X in n , we construct a non-negative semi-algebraic 𝒞 2 function f such that X = f - 1 ( 0 ) and such that for δ > 0 sufficiently small, the inclusion of X in f - 1 ( [ 0 , δ ] ) is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of  X .

Currently displaying 341 – 360 of 471