Displaying 401 – 420 of 471

Showing per page

Tame semiflows for piecewise linear vector fields

Daniel Panazzolo (2002)

Annales de l’institut Fourier

Let be a disjoint decomposition of n and let X be a vector field on n , defined to be linear on each cell of the decomposition . Under some natural assumptions, we show how to associate a semiflow to X and prove that such semiflow belongs to the o-minimal structure an , exp . In particular, when X is a continuous vector field and Γ is an invariant subset of X , our result implies that if Γ is non-spiralling then the Poincaré first return map associated Γ is also in an , exp .

Tangential Markov inequality in L p norms

Agnieszka Kowalska (2015)

Banach Center Publications

In 1889 A. Markov proved that for every polynomial p in one variable the inequality | | p ' | | [ - 1 , 1 ] ( d e g p ) ² | | p | | [ - 1 , 1 ] is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs and surfaces,...

Teoría métrica de curvas semialgebráicas.

Lev Birbrair, Alexandre C. G. Fernandes (2000)

Revista Matemática Complutense

We present a complete bi-Lipschitz classification of germs of semialgebraic curves (semialgebraic sets of the dimension one). For this purpose we introduce the so-called Hölder Semicomplex, a bi-Lipschitz invariant. Hölder Semicomplex is the collection of all first exponents of Newton-Puiseux expansions, for all pairs of branches of a curve. We prove that two germs of curves are bi-Lipschitz equivalent if and only if the corresponding Hölder Semicomplexes are isomorphic. We also prove that any Hölder...

The degree at infinity of the gradient of a polynomial in two real variables

Maciej Sękalski (2005)

Annales Polonici Mathematici

Let f:ℝ² → ℝ be a polynomial mapping with a finite number of critical points. We express the degree at infinity of the gradient ∇f in terms of the real branches at infinity of the level curves {f(x,y) = λ} for some λ ∈ ℝ. The formula obtained is a counterpart at infinity of the local formula due to Arnold.

The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms

Satoshi Koike, Laurentiu Paunescu (2009)

Annales de l’institut Fourier

Let A n be a set-germ at 0 n such that 0 A ¯ . We say that r S n - 1 is a direction of A at 0 n if there is a sequence of points { x i } A { 0 } tending to 0 n such that x i x i r as i . Let D ( A ) denote the set of all directions of A at 0 n .Let A , B n be subanalytic set-germs at 0 n such that 0 A ¯ B ¯ . We study the problem of whether the dimension of the common direction set, dim ( D ( A ) D ( B ) ) is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of A and B are also subanalytic. In particular if two subanalytic...

The Gaussian measure on algebraic varieties

Ilka Agricola, Thomas Friedrich (1999)

Fundamenta Mathematicae

We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety M n is dense in the Hilbert space L 2 ( M , e - | x | 2 d μ ) , where dμ denotes the volume form of M and d ν = e - | x | 2 d μ the Gaussian measure on M.

Currently displaying 401 – 420 of 471