An algorithmic criterion for basicness in dimension 2.
Page 1 Next
F. Acquistapace, F. Broglia (1994)
Manuscripta mathematica
Amadou Lamine Fall (2009)
Annales de l’institut Fourier
Nous montrons dans cet article des bornes pour la régularité de Castelnuovo-Mumford d’un schéma admettant des singularités, en fonction des degrés des équations définissant le schéma, de sa dimension et de la dimension de son lieu singulier. Dans le cas où les singularités sont isolées, nous améliorons la borne fournie par Chardin et Ulrich et dans le cas général, nous établissons une borne doublement exponentielle en la dimension du lieu singulier.
B. Sturmfels, N.V. Trung, W. Vogel (1995)
Mathematische Annalen
Basu, S., Pollack, R., Roy, M.-F. (2004)
Zapiski Nauchnykh Seminarov POMI
Stevens, Jan (1995)
Experimental Mathematics
Lorenzo Ramero (1990)
Manuscripta mathematica
Mark Andrea A. De Cataldo (1998)
Annales de l'institut Fourier
We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.
János Kollár (1999)
Journal of the European Mathematical Society
Let be polynomials in variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials such that . The effective versions of this result bound the degrees of the in terms of the degrees of the . The aim of this paper is to generalize this to the case when the are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.
F. Acquistapace, R. Benedetti (1990)
Inventiones mathematicae
Carlos D’Andrea, Teresa Krick, Martín Sombra (2013)
Annales scientifiques de l'École Normale Supérieure
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion...
Jarnicki, Witold, O'Carroll, Liam, Winiarski, Tadeusz (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Alekos Vidras, Alain Yger (2001)
Annales scientifiques de l'École Normale Supérieure
Lucio Guerra, Gian Pietro Pirola (2009)
Collectanea Mathematica
C. T. C. Wall (1998)
Rendiconti del Seminario Matematico della Università di Padova
Gal Binyamini, Sergei Yakovenko (2009)
Annales de l’institut Fourier
We study the problem of placing effective upper bounds for the number of zeroes of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of a given dimension having singular points. As a function of , this bound turns out to be double exponential in the precise sense explained in the paper.As a corollary, we obtain a solution of the so-called restricted infinitesimal...
Chistov, A.L. (2005)
Zapiski Nauchnykh Seminarov POMI
M. Elkadi, A. Yger (1995)
Banach Center Publications
Berenstein, Carlos A., Yger, Alain (1996)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Bernard Teissier (1989/1990)
Séminaire Bourbaki
Pablo Solerno (1989)
Publications mathématiques et informatique de Rennes
Page 1 Next