A structured staircase algorithm for skew-symmetric/symmetric pencils.
This paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical right/left inverses of polynomial matrices are introduced, including the so-called τ-inverses, σ-inverses and, in particular, S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The applicationoriented problem of selecting stable inverses is also solved. Applications in inverse-model control, in particular robust minimum...
In this paper, we introduce a subclass of strongly clean rings. Let be a ring with identity, be the Jacobson radical of , and let denote the set of all elements of which are nilpotent in . An element is called very -clean provided that there exists an idempotent such that and or is an element of . A ring is said to be very -clean in case every element in is very -clean. We prove that every very -clean ring is strongly -rad clean and has stable range one. It is shown...
This paper concerns inequalities like TrA ≤ TrB, where A and B are certain Hermitian complex matrices and Tr stands for the trace. In most cases A and B will be exponential or logarithmic expressions of some other matrices. Due to the interest of the author in quantum statistical mechanics, the possible applications of the trace inequalities will be commented from time to time. Several inequalities treated below have been established in the context of Hilbert space operators or operator algebras....
We will study applications of numerical methods in Clifford algebras in , in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in . In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can...
We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.
In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with a measure of the residual corresponding to the error in a specified solution norm. The residual norm can be designed such that the resulting low-rank approximations are optimal with respect to particular norms of interest, thus allowing to take...
The systems of an arbitrary number of linear inequalities OVer a real locally convex space have been classified in three classes, namely: consistent, weakly inconsistent and strongly inconsistent, i.e. having ordinary solutions, weak solutions or notsolutions respectively. In this paper, the third type is divided in two classes: strict-strongly and quasi-strongly inconsistent and is given a topology over a quotient space of the set of systems over finite- dimensional spaces, that yields a set of...
An algorithm is given to decompose an automorphism of a finite vector space over ℤ₂ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ℤ₂-representations generated by a redundant base, this is a decomposition into base changes.
Fiedler and Markham (1994) proved where is a positive semidefinite matrix partitioned into blocks with each block and . We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove
Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to , the real vector space , furnished with the quadratic form , and especially with a description of this group that involves Clifford algebras.