Normalizers of Modular Groups.
Some quadratic forms related to "greatest common divisor matrices" are represented in terms of L²-norms of rather simple functions. Our formula is especially useful when the size of the matrix grows, and we will study the asymptotic behaviour of the smallest and largest eigenvalues. Indeed, a sharp bound in terms of the zeta function is obtained. Our leading example is a hybrid between Hilbert's matrix and Smith's matrix.
Let be a connected simple graph on vertices. The Laplacian index of , namely, the greatest Laplacian eigenvalue of , is well known to be bounded above by . In this paper, we give structural characterizations for graphs with the largest Laplacian index . Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian index are investigated. We present a necessary and sufficient condition on and for the existence of a -regular graph of order with the largest Laplacian...
In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a...
Let be a set of distinct positive integers and an integer. Denote the power GCD (resp. power LCM) matrix on having the -th power of the greatest common divisor (resp. the -th power of the least common multiple ) as the -entry of the matrix by (resp. . We call the set an odd gcd closed (resp. odd lcm closed) set if every element in is an odd number and (resp. ) for all . In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that...
A matrix whose entries consist of elements from the set is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) with d ∈ N for nonsingular , i=1,...,n.