Displaying 421 – 440 of 941

Showing per page

Maximal column rank preservers of fuzzy matrices

Seok-Zun Song, Soo-Roh Park (2001)

Discussiones Mathematicae - General Algebra and Applications

This paper concerns two notions of rank of fuzzy matrices: maximal column rank and column rank. We investigate the difference of them. We also characterize the linear operators which preserve the maximal column rank of fuzzy matrices. That is, a linear operator T preserves maximal column rank if and only if it has the form T(X) = UXV with some invertible fuzzy matrices U and V.

Minimal c p rank.

Shaked-Monderer, Naomi (2001)

ELA. The Electronic Journal of Linear Algebra [electronic only]

Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix

Hiroshi Kurata, Ravindra B. Bapat (2016)

Special Matrices

By a hollow symmetric matrix we mean a symmetric matrix with zero diagonal elements. The notion contains those of predistance matrix and Euclidean distance matrix as its special cases. By a centered symmetric matrix we mean a symmetric matrix with zero row (and hence column) sums. There is a one-toone correspondence between the classes of hollow symmetric matrices and centered symmetric matrices, and thus with any hollow symmetric matrix D we may associate a centered symmetric matrix B, and vice...

Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions

Siao Hong, Shuangnian Hu, Shaofang Hong (2016)

Open Mathematics

Let f be an arithmetic function and S = {x1, …, xn} be a set of n distinct positive integers. By (f(xi, xj)) (resp. (f[xi, xj])) we denote the n × n matrix having f evaluated at the greatest common divisor (xi, xj) (resp. the least common multiple [xi, xj]) of x, and xj as its (i, j)-entry, respectively. The set S is said to be gcd closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n. In this paper, we give formulas for the determinants of the matrices (f(xi, xj)) and (f[xi, xj]) if S consists of multiple coprime...

Currently displaying 421 – 440 of 941