Displaying 721 – 740 of 941

Showing per page

Signatura of magic and Latin integer squares: isentropic clans and indexing

Ian Cameron, Adam Rogers, Peter D. Loly (2013)

Discussiones Mathematicae Probability and Statistics

The 2010 study of the Shannon entropy of order nine Sudoku and Latin square matrices by Newton and DeSalvo [Proc. Roy. Soc. A 2010] is extended to natural magic and Latin squares up to order nine. We demonstrate that decimal and integer measures of the Singular Value sets, here named SV clans, are a powerful way of comparing different integer squares. Several complete sets of magic and Latin squares are included, including the order eight Franklin subset which is of direct relevance...

Simple conditions for practical stability of positive fractional discrete-time linear systems

Mikołaj Busłowicz, Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

In the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical...

Singular M-matrices which may not have a nonnegative generalized inverse

Agrawal N. Sushama, K. Premakumari, K.C. Sivakumar (2014)

Special Matrices

A matrix A ∈ ℝn×n is a GM-matrix if A = sI − B, where 0 < ρ(B) ≤ s and B ∈WPFn i.e., both B and Bt have ρ(B) as their eigenvalues and their corresponding eigenvector is entry wise nonnegative. In this article, we consider a generalization of a subclass of GM-matrices having a nonnegative core nilpotent decomposition and prove a characterization result for such matrices. Also, we study various notions of splitting of matrices from this new class and obtain sufficient conditions for their convergence....

Smallest singular value of sparse random matrices

Alexander E. Litvak, Omar Rivasplata (2012)

Studia Mathematica

We extend probability estimates on the smallest singular value of random matrices with independent entries to a class of sparse random matrices. We show that one can relax a previously used condition of uniform boundedness of the variances from below. This allows us to consider matrices with null entries or, more generally, with entries having small variances. Our results do not assume identical distribution of the entries of a random matrix and help to clarify the role of the variances of the entries....

Solving systems of two–sided (max, min)–linear equations

Martin Gavalec, Karel Zimmermann (2010)

Kybernetika

A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.

Currently displaying 721 – 740 of 941