Displaying 881 – 900 of 941

Showing per page

Voiculescu’s Entropy and Potential Theory

Thomas Bloom (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.

When does the inverse have the same sign pattern as the transpose?

Carolyn A. Eschenbach, Frank J. Hall, Deborah L. Harrell, Zhongshan Li (1999)

Czechoslovak Mathematical Journal

By a sign pattern (matrix) we mean an array whose entries are from the set { + , - , 0 } . The sign patterns A for which every real matrix with sign pattern A has the property that its inverse has sign pattern A T are characterized. Sign patterns A for which some real matrix with sign pattern A has that property are investigated. Some fundamental results as well as constructions concerning such sign pattern matrices are provided. The relation between these sign patterns and the sign patterns of orthogonal matrices...

Wilks' factorization of the complex matrix variate Dirichlet distributions.

Xinping Cui, Arjun K. Gupta, Daya K. Nagar (2005)

Revista Matemática Complutense

In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with...

Z -pencils.

McDonald, Judith J., Olesky, D.Dale, Schneider, Hans, Tsatsomeros, Michael J., van den Driessche, P. (1998)

ELA. The Electronic Journal of Linear Algebra [electronic only]

Zero-one completely positive matrices and the A(R, S) classes

G. Dahl, T. A. Haufmann (2016)

Special Matrices

A matrix of the form A = BBT where B is nonnegative is called completely positive (CP). Berman and Xu (2005) investigated a subclass of CP-matrices, called f0, 1g-completely positive matrices. We introduce a related concept and show connections between the two notions. An important relation to the so-called cut cone is established. Some results are shown for f0, 1g-completely positive matrices with given graphs, and for {0,1}-completely positive matrices constructed from the classes of (0, 1)-matrices...

Zero-term rank preservers of integer matrices

Seok-Zun Song, Young-Bae Jun (2006)

Discussiones Mathematicae - General Algebra and Applications

The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.

Currently displaying 881 – 900 of 941