Tilting theory - an introduction
We show the Tychonoff's theorem for a Grothendieck category with a set of small projective generators. Strictly quasi-finite objects for semiartinian Grothendieck categories are characterized. We apply these results to the study of the Morita duality of dual algebra of a coalgebra.
Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration such that for all t. Given a module M with square-free top and a projective cover P, she showed that if and only if M has no proper degeneration where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from our results....
Let ZA be the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under which every torsion matrix U, with identity augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix.
We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group . Additionally we prove that...
Let U(RG) be the unit group of the group ring RG. In this paper we study group rings RG whose support elements of every torsion unit are torsion, where R is either the ring of integers Z or a field K.
We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish a complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.