Indecomposable Modules with Cyclic Vertex.
We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert...
We describe all those indecomposable primarily comultiplication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given by R. Ebrahimi Atani and S. Ebrahimi Atani [Algebra Discrete Math. 2009] to a more general primarily comultiplication modules case.
We discuss the problem of classification of indecomposable representations for extended Dynkin quivers of type 𝔼̃₈, with a fixed orientation. We describe a method for an explicit determination of all indecomposable preprojective and preinjective representations for those quivers over an arbitrary field and for all indecomposable representations in case the field is algebraically closed. This method uses tilting theory and results about indecomposable modules for a canonical algebra of type (5,3,2)...
Various results on the induced representations of group rings are extended to modules over strongly group-graded rings. In particular, a proof of the graded version of Mackey's theorem is given.
In this paper the problem of construction of the canonical matrix belonging to symplectic forms on a module over the so called plural algebra (introduced in [5]) is solved.
I. S. Cohen proved that any commutative local noetherian ring R that is J(R)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra A over a commutative ring K. In case K is a Hensel ring and the module is finitely generated, under some additional conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed....
In this paper some infinitely based varieties of groups are constructed and these results are transferred to the associative algebras (or Lie algebras) over an infinite field of an arbitrary positive characteristic.
We classify the uniserial infinitesimal unipotent commutative groups of finite representation type over algebraically closed fields. As an application we provide detailed information on the structure of those infinitesimal groups whose distribution algebras have a representation-finite principal block.