Minimum distances of error-correcting codes in incidence rings.
Let A be a finitely generated associative algebra over an algebraically closed field. We characterize the finite-dimensional A-modules whose orbit closures are local hypersurfaces. The result is reduced to an analogous characterization for orbit closures of quiver representations obtained in Section 3.
For every module we have a natural monomorphism and we focus our attention on the case when is also an epimorphism. Some other colimits are also considered.
For every module M we have a natural monomorphism and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.