Displaying 1721 – 1740 of 3966

Showing per page

On A -radicals

Sodnomkhorloo Tumurbat, Richard Wiegandt (2006)

Mathematica Slovaca

On a separation of orbits in the module variety for domestic canonical algebras

Piotr Dowbor, Andrzej Mróz (2008)

Colloquium Mathematicae

Given a pair M,M' of finite-dimensional modules over a domestic canonical algebra Λ, we give a fully verifiable criterion, in terms of a finite set of simple linear algebra invariants, deciding if M and M' lie in the same orbit in the module variety, or equivalently, if M and M' are isomorphic.

On a subset with nilpotent values in a prime ring with derivation

Vincenzo De Filippis (2002)

Bollettino dell'Unione Matematica Italiana

Let R be a prime ring, with no non-zero nil right ideal, d a non-zero drivation of R , I a non-zero two-sided ideal of R . If, for any x , y I , there exists n = n x , y 1 such that d x , y - x , y n = 0 , then R is commutative. As a consequence we extend the result to Lie ideals.

On a theorem of McCoy

Rajendra K. Sharma, Amit B. Singh (2024)

Mathematica Bohemica

We study McCoy’s theorem to the skew Hurwitz series ring ( HR , ω ) for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem of skew Hurwitz series.

On additive functions for stable translation quivers

Grzegorz Bobiński (1999)

Colloquium Mathematicae

The aim of this note is to give a complete description of the positive additive functions for the stable nonperiodic translation quivers with finitely many orbits. In particular, we show that all positive additive functions on the stable translation quivers of Euclidean type (respectively, of wild type) are periodic, and hence bounded (respectively, are unbounded, and hence nonperiodic).

On algebraic closures.

R. Raphael (1992)

Publicacions Matemàtiques

This is a description of some different approaches which have been taken to the problem of generalizing the algebraic closure of a field. Work surveyed is by Enoch and Hochster (commutative algebra), Raphael (categories and rings of quotients), Borho (the polynomial approach), and Carson (logic).Later work and applications are given.

On algebras of generalized Latin squares

František Katrnoška (2011)

Mathematica Bohemica

The main result of this paper is the introduction of a notion of a generalized R -Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added.

Currently displaying 1721 – 1740 of 3966