Galois coverings, Morita equivalence and smash extensions of categories over a field.
Let and be two ring homomorphisms and let and be ideals of and , respectively, such that . In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of with along with respect to (denoted by introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.
For a ring R and a right R-module M, a submodule N of M is said to be δ-small in M if, whenever N+X=M with M/X singular, we have X=M. Let ℘ be the class of all singular simple modules. Then δ(M)=Σ{ L≤ M| L is a δ-small submodule of M} = Re jm(℘)=∩{ N⊂ M: M/N∈℘. We call M δ-coatomic module whenever N≤ M and M/N=δ(M/N) then M/N=0. And R is called right (left) δ-coatomic ring if the right (left) R-module R R(RR) is δ-coatomic. In this note, we study δ-coatomic modules and ring. We prove M=⊕i=1n Mi...
In this paper necessary and sufficient conditions for large subdirect products of -flat modules from the category to be -flat are given.