Page 1 Next

Displaying 1 – 20 of 28

Showing per page

n -flat and n -FP-injective modules

Xiao Yan Yang, Zhongkui Liu (2011)

Czechoslovak Mathematical Journal

In this paper, we study the existence of the n -flat preenvelope and the n -FP-injective cover. We also characterize n -coherent rings in terms of the n -FP-injective and n -flat modules.

n - gr -coherent rings and Gorenstein graded modules

Mostafa Amini, Driss Bennis, Soumia Mamdouhi (2022)

Czechoslovak Mathematical Journal

Let R be a graded ring and n 1 be an integer. We introduce and study the notions of Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules by using the notion of special finitely presented graded modules. On n -gr-coherent rings, we investigate the relationships between Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules. Among other results, we prove that any graded module in R -gr (or gr- R ) admits a Gorenstein n -FP-gr-injective (or Gorenstein n -gr-flat) cover and preenvelope, respectively....

Natural dualities between abelian categories

Flaviu Pop (2011)

Open Mathematics

In this paper we consider a pair of right adjoint contravariant functors between abelian categories and describe a family of dualities induced by them.

Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra

Deng Yin Wang, Haishan Pan, Xuansheng Wang (2010)

Czechoslovak Mathematical Journal

Let 𝒫 be an arbitrary parabolic subalgebra of a simple associative F -algebra. The ideals of 𝒫 are determined completely; Each ideal of 𝒫 is shown to be generated by one element; Every non-linear invertible map on 𝒫 that preserves ideals is described in an explicit formula.

Non-orbicular modules for Galois coverings

Piotr Dowbor (2001)

Colloquium Mathematicae

Given a group G of k-linear automorphisms of a locally bounded k-category R, the problem of existence and construction of non-orbicular indecomposable R/G-modules is studied. For a suitable finite sequence B of G-atoms with a common stabilizer H, a representation embedding Φ B : I - s p r ( H ) m o d ( R / G ) , which yields large families of non-orbicular indecomposable R/G-modules, is constructed (Theorem 3.1). It is proved that if a G-atom B with infinite cyclic stabilizer admits a non-trivial left Kan extension B̃ with the same...

Non-perfect rings and a theorem of Eklof and Shelah

Jan Trlifaj (1991)

Commentationes Mathematicae Universitatis Carolinae

We prove a stronger form, A + , of a consistency result, A , due to Eklof and Shelah. A + concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that A does not hold for left perfect rings.

Non-singular covers over monoid rings

Ladislav Bican (2008)

Mathematica Bohemica

We shall introduce the class of strongly cancellative multiplicative monoids which contains the class of all totally ordered cancellative monoids and it is contained in the class of all cancellative monoids. If G is a strongly cancellative monoid such that h G G h for each h G and if R is a ring such that a R R a for each a R , then the class of all non-singular left R -modules is a cover class if and only if the class of all non-singular left R G -modules is a cover class. These two conditions are also equivalent whenever...

Non-singular covers over ordered monoid rings

Ladislav Bican (2006)

Mathematica Bohemica

Let G be a multiplicative monoid. If R G is a non-singular ring such that the class of all non-singular R G -modules is a cover class, then the class of all non-singular R -modules is a cover class. These two conditions are equivalent whenever G is a well-ordered cancellative monoid such that for all elements g , h G with g < h there is l G such that l g = h . For a totally ordered cancellative monoid the equalities Z ( R G ) = Z ( R ) G and σ ( R G ) = σ ( R ) G hold, σ being Goldie’s torsion theory.

Non-singular precovers over polynomial rings

Ladislav Bican (2006)

Commentationes Mathematicae Universitatis Carolinae

One of the results in my previous paper On torsionfree classes which are not precover classes, preprint, Corollary 3, states that for every hereditary torsion theory τ for the category R -mod with τ σ , σ being Goldie’s torsion theory, the class of all τ -torsionfree modules forms a (pre)cover class if and only if τ is of finite type. The purpose of this note is to show that all members of the countable set 𝔐 = { R , R / σ ( R ) , R [ x 1 , , x n ] , R [ x 1 , , x n ] / σ ( R [ x 1 , , x n ] ) , n < ω } of rings have the property that the class of all non-singular left modules forms a (pre)cover...

Currently displaying 1 – 20 of 28

Page 1 Next