The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 44

Showing per page

Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent to mat...

Matrix rings with summand intersection property

F. Karabacak, Adnan Tercan (2003)

Czechoslovak Mathematical Journal

A ring R has right SIP (SSP) if the intersection (sum) of two direct summands of R is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of R by M has SIP if and only if R has SIP and ( 1 - e ) M e = 0 for every idempotent e in R . Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.

Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings

Vijay Kumar Bhat (2013)

Czechoslovak Mathematical Journal

Let R be a ring. We recall that R is called a near pseudo-valuation ring if every minimal prime ideal of R is strongly prime. Let now σ be an automorphism of R and δ a σ -derivation of R . Then R is said to be an almost δ -divided ring if every minimal prime ideal of R is δ -divided. Let R be a Noetherian ring which is also an algebra over ( is the field of rational numbers). Let σ be an automorphism of R such that R is a σ ( * ) -ring and δ a σ -derivation of R such that σ ( δ ( a ) ) = δ ( σ ( a ) ) for all a R . Further, if for any...

Modules.

Cockett, J. R. B., Koslowski, J., Seely, R. A. G., Wood, R. J. (2003)

Theory and Applications of Categories [electronic only]

Modules commuting (via Hom) with some colimits

Robert El Bashir, Tomáš Kepka, Petr Němec (2003)

Czechoslovak Mathematical Journal

For every module M we have a natural monomorphism Ψ : i I H o m R ( M , A i ) H o m R M , i I A i and we focus our attention on the case when Ψ is also an epimorphism. Some other colimits are also considered.

Modules commuting (via Hom) with some limits

Robert El Bashir, Tomáš Kepka (1998)

Fundamenta Mathematicae

For every module M we have a natural monomorphism   Φ : i I H o m R ( A i , M ) H o m R ( i I A i , M ) and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.

Modules continus

Jacques Bichot (1971)

Publications du Département de mathématiques (Lyon)

Currently displaying 1 – 20 of 44

Page 1 Next