Page 1 Next

Displaying 1 – 20 of 47

Showing per page

Calabi-Yau stable module categories of finite type

Jerzy Białkowski, Andrzej Skowroński (2007)

Colloquium Mathematicae

We describe the stable module categories of the self-injective finite-dimensional algebras of finite representation type over an algebraically closed field which are Calabi-Yau (in the sense of Kontsevich).

Cartan matrices of selfinjective algebras of tubular type

Jerzy Białkowski (2004)

Open Mathematics

The Cartan matrix of a finite dimensional algebra A is an important combinatorial invariant reflecting frequently structural properties of the algebra and its module category. For example, one of the important features of the modular representation theory of finite groups is the nonsingularity of Cartan matrices of the associated group algebras (Brauer’s theorem). Recently, the class of all tame selfinjective algebras having simply connected Galois coverings and the stable Auslander-Reiten quiver...

Categorical methods in graded ring theory.

Angel del Río (1992)

Publicacions Matemàtiques

Let G be a group, R a G-graded ring and X a right G-set. We study functors between categories of modules graded by G-sets, continuing the work of [M]. As an application we obtain generalizations of Cohen-Montgomery Duality Theorems by categorical methods. Then we study when some functors introduced in [M] (which generalize some functors ocurring in [D1], [D2] and [NRV]) are separable. Finally we obtain an application to the study of the weak dimension of a group graded ring.

Characterizations of incidence modules

Naseer Ullah, Hailou Yao, Qianqian Yuan, Muhammad Azam (2024)

Czechoslovak Mathematical Journal

Let R be an associative ring and M be a left R -module. We introduce the concept of the incidence module I ( X , M ) of a locally finite partially ordered set X over M . We study the properties of I ( X , M ) and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.

Characterizations of semiperfect and perfect rings.

Weimin Xue (1996)

Publicacions Matemàtiques

We characterize semiperfect modules, semiperfect rings, and perfect rings using locally projective covers and generalized locally projective covers, where locally projective modules were introduced by Zimmermann-Huisgen and generalized locally projective covers are adapted from Azumaya’s generalized projective covers.

Classification of ideals of 8 -dimensional Radford Hopf algebra

Yu Wang (2022)

Czechoslovak Mathematical Journal

Let H m , n be the m n 2 -dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of 8 -dimensional Radford Hopf algebra H 2 , 2 by generators.

Currently displaying 1 – 20 of 47

Page 1 Next