Displaying 561 – 580 of 1163

Showing per page

On restrictions of indecomposables of tame algebras

R. Bautista, E. Pérez, L. Salmerón (2011)

Colloquium Mathematicae

We continue the study of ditalgebras, an acronym for "differential tensor algebras", and of their categories of modules. We examine extension/restriction interactions between module categories over a ditalgebra and a proper subditalgebra. As an application, we prove a result on representations of finite-dimensional tame algebras Λ over an algebraically closed field, which gives information on the extension/restriction interaction between module categories of some special algebras Λ₀, called convex...

On rings all of whose modules are retractable

Şule Ecevit, Muhammet Tamer Koşan (2009)

Archivum Mathematicum

Let R be a ring. A right R -module M is said to be retractable if 𝕋 H o m R ( M , N ) 0 whenever N is a non-zero submodule of M . The goal of this article is to investigate a ring R for which every right R-module is retractable. Such a ring will be called right mod-retractable. We proved that ( 1 ) The ring i R i is right mod-retractable if and only if each R i is a right mod-retractable ring for each i , where is an arbitrary finite set. ( 2 ) If R [ x ] is a mod-retractable ring then R is a mod-retractable ring.

On rings close to regular and p -injectivity

Roger Yue Chi Ming (2006)

Commentationes Mathematicae Universitatis Carolinae

The following results are proved for a ring A : (1) If A is a fully right idempotent ring having a classical left quotient ring Q which is right quasi-duo, then Q is a strongly regular ring; (2) A has a classical left quotient ring Q which is a finite direct sum of division rings iff A is a left TC -ring having a reduced maximal right ideal and satisfying the maximum condition on left annihilators; (3) Let A have the following properties: (a) each maximal left ideal of A is either a two-sided ideal...

On rings with a unique proper essential right ideal

O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash (2004)

Fundamenta Mathematicae

Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and is Artin semisimple...

On selfinjective algebras of tilted type

Andrzej Skowroński, Kunio Yamagata (2015)

Colloquium Mathematicae

We provide a characterization of all finite-dimensional selfinjective algebras over a field K which are socle equivalent to a prominent class of selfinjective algebras of tilted type.

Currently displaying 561 – 580 of 1163