Displaying 801 – 820 of 1163

Showing per page

Separable K-linear categories

Andrei Chiteș, Costel Chiteș (2010)

Open Mathematics

We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.

Single elements.

Gardner, B.J., Mason, Gordon (2006)

Beiträge zur Algebra und Geometrie

Some characterizations of regular modules.

Goro Azumaya (1990)

Publicacions Matemàtiques

Let M be a left module over a ring R. M is called a Zelmanowitz-regular module if for each x ∈ M there exists a homomorphism F: M → R such that f(x) = x. Let Q be a left R-module and h: Q → M a homomorphism. We call h locally split if for every x ∈ M there exists a homomorphism g: M → Q such that h(g(x)) = x. M is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent:(1) M is Zelmanowitz-regular.(2) every homomorphism into M...

Currently displaying 801 – 820 of 1163