Representation-finite biserial algebras.
Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.
We investigate the representation theory of the positively based algebra , which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that is of finite representative type if , of tame type if , and of wild type if In the case when , all indecomposable representations of are constructed. Furthermore, their right cell representations as well as left cell representations of are described.
Continuing the paper [Le], we give criteria for the incidence algebra of an arbitrary finite partially ordered set to be of tame representation type. This completes our result in [Le], concerning completely separating incidence algebras of posets.
Let A be a finite-dimensional algebra over an algebraically closed field. The algebra A is called locally hereditary if any local left ideal of A is projective. We give criteria, in terms of the Tits quadratic form, for a locally hereditary algebra to be of tame representation type. Moreover, the description of all representation-tame locally hereditary algebras is completed.
We characterize minimal free resolutions of homogeneous bundles on . Besides we study stability and simplicity of homogeneous bundles on by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.
We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).
We define and investigate Ringel-Hall algebras of coalgebras (usually infinite-dimensional). We extend Ringel's results [Banach Center Publ. 26 (1990) and Adv. Math. 84 (1990)] from finite-dimensional algebras to infinite-dimensional coalgebras.
A module M is called finendo (cofinendo) if M is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any hereditary ring, then the following conditions are equivalent: (a) Every right R-module is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple and every finitely generated indecomposable left R-module is finendo;...
We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.