Displaying 61 – 80 of 128

Showing per page

Polynomial identities of nil algebras of bounded index

Francesca Benanti, Vesselin Drensky (1999)

Bollettino dell'Unione Matematica Italiana

Lo scopo di questo lavoro è di dare una nuova descrizione del T -ideale generato dalla nil-identità x n = 0 come immagine omeomorfa della n -esima potenza tensoriale simmetrica dell'algebra associativa libera K X su un campo K di caratteristica 0 . Come applicazione calcoliamo il carattere delle conseguenze multilineari di grado n + 2 dell'identità x n = 0 .

Radical d'une algèbre symétrique à gauche

Jacques Helmstetter (1979)

Annales de l'institut Fourier

L’étude d’une algèbre symétrique à gauche (de dimension finie sur C ) est liée à celle d’un groupe de transformations affines opérant avec trajectoire ouverte et groupe d’isotropie discret sur cette trajectoire. Son radical est défini grâce aux translations conservant cette trajectoire; l’algèbre est nilpotente si ce groupe opère de façon simplement transitive (les multiplications à droite sont alors nilpotentes). Le radical est le plus grand idéal à gauche nilpotent.

Range inclusion results for derivations on noncommutative Banach algebras

Volker Runde (1993)

Studia Mathematica

Let A be a Banach algebra, and let D : A → A be a (possibly unbounded) derivation. We are interested in two problems concerning the range of D: 1. When does D map into the (Jacobson) radical of A? 2. If [a,Da] = 0 for some a ∈ A, is Da necessarily quasinilpotent? We prove that derivations satisfying certain polynomial identities map into the radical. As an application, we show that if [a,[a,[a,Da]]] lies in the prime radical of A for all a ∈ A, then D maps into the radical. This generalizes a result...

Rings in which elements are sum of a central element and an element in the Jacobson radical

Guanglin Ma, Yao Wang, André Leroy (2024)

Czechoslovak Mathematical Journal

An element in a ring R is called CJ if it is of the form c + j , where c belongs to the center and j is an element from the Jacobson radical. A ring R is called CJ if each element of R is CJ. We establish the basic properties of CJ rings, give several characterizations of these rings, and connect this notion with many standard elementwise properties such as clean, uniquely clean, nil clean, CN, and CU. We study the behavior of this notion under various ring extensions. In particular, we show that the...

Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute

Ali H. Handam, Hani A. Khashan (2017)

Open Mathematics

An element in a ring R with identity is said to be strongly nil clean if it is the sum of an idempotent and a nilpotent that commute, R is said to be strongly nil clean if every element of R is strongly nil clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. Then R is said to be strongly g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(x) that commute. In this paper, we give some relations between strongly nil clean rings and strongly...

Skew derivations and the nil and prime radicals

Jeffrey Bergen, Piotr Grzeszczuk (2012)

Colloquium Mathematicae

We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0, then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.

Some examples of nil Lie algebras

Ivan P. Shestakov, Efim Zelmanov (2008)

Journal of the European Mathematical Society

Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.

Currently displaying 61 – 80 of 128