Displaying 301 – 320 of 510

Showing per page

Semiprime rings with nilpotent Lie ring of inner derivations

Kamil Kular (2014)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions

Skew derivations and the nil and prime radicals

Jeffrey Bergen, Piotr Grzeszczuk (2012)

Colloquium Mathematicae

We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0, then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.

Some examples of nil Lie algebras

Ivan P. Shestakov, Efim Zelmanov (2008)

Journal of the European Mathematical Society

Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.

Currently displaying 301 – 320 of 510