The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A theorem of Utumi states that if R is a right self-injective ring such that every maximal ideal has nonzero annihilator, then R modulo the Jacobson radical J is a finite product of simple rings and is a von Neuman regular ring. We prove two theorems and a conjecture of Shamsuddin that characterize when R itself is a von Neumann ring, using a splitting theorem of the author on when the maximal regular ideal of a ring splits off.
If is a prime ring such that is not completely reducible and the additive group is not complete, then is slender.
Currently displaying 1 –
18 of
18