Displaying 81 – 100 of 510

Showing per page

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

Derivations with power central values on Lie ideals in prime rings

Basudeb Dhara, Rajendra K. Sharma (2008)

Czechoslovak Mathematical Journal

Let R be a prime ring of char R 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 0 , n 2 0 , n 3 0 , ( u n 1 [ d ( u ) , u ] u n 2 ) n 3 Z ( R ) for all u U , then R satisfies S 4 , the standard identity in four variables.

Essential Cover and Closure

Andruszkiewicz, R. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16N80, 16S70, 16D25, 13G05.We construct some new examples showing that Heyman and Roos construction of the essential closure in the class of associative rings can terminate at any finite or the first infinite ordinal.

Currently displaying 81 – 100 of 510