The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let C n(A,B) be the relative Hochschild bar resolution groups of a subring B ⊆ A. The subring pair has right depth 2n if C n+1(A,B) is isomorphic to a direct summand of a multiple of C n(A,B) as A-B-bimodules; depth 2n + 1 if the same condition holds only as B-B-bimodules. It is then natural to ask what is defined if this same condition should hold as A-A-bimodules, the so-called H-depth 2n − 1 condition. In particular, the H-depth 1 condition coincides with A being an H-separable extension of B....
Starting with some observations on (strong) lifting of idempotents, we characterize a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with small image. This is the dual of Yamagata's work [Colloq. Math. 113 (2008)] on a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with large kernel.
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups for which is regular is given.
We investigate the formal matrix ring over defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
Currently displaying 1 –
20 of
27