Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem
The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain
We describe the endomorphism rings of maximal rigid objects in the cluster categories of tubes. Moreover, we show that they are gentle and have Gorenstein dimension 1. We analyse their representation theory and prove that they are of finite type. Finally, we study the relationship between the module category and the cluster tube via the Hom-functor.
Let H be a connected wild hereditary path algebra. We prove that if Z is a quasi-simple regular brick, and [r]Z indecomposable regular of quasi-length r and with quasi-top Z, then .
Partially supported by grant RFFI 98-01-01020.Let Uc be the variety of associative algebras generated by the algebra of all upper triangular matrices, the field being arbitrary. We prove that the upper exponent of any subvariety V ⊂ Uc coincides with the lower exponent and is an integer.
It is shown that a ring is a -ring if and only if there exists a complete orthogonal set of idempotents such that all are -rings. We also investigate -rings for Morita contexts, module extensions and power series rings.
We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings.