Displaying 341 – 360 of 1097

Showing per page

Injective and projective properties of R [ x ] -modules

Sangwon Park, Eunha Cho (2004)

Czechoslovak Mathematical Journal

We study whether the projective and injective properties of left R -modules can be implied to the special kind of left R [ x ] -modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.

Invariant differential operators on the tangent space of some symmetric spaces

Thierry Levasseur, J. Toby Stafford (1999)

Annales de l'institut Fourier

Let 𝔤 be a complex, semisimple Lie algebra, with an involutive automorphism ϑ and set 𝔨 = Ker ( ϑ - I ) , 𝔭 = Ker ( ϑ + I ) . We consider the differential operators, 𝒟 ( 𝔭 ) K , on 𝔭 that are invariant under the action of the adjoint group K of 𝔨 . Write τ : 𝔨 Der 𝒪 ( 𝔭 ) for the differential of this action. Then we prove, for the class of symmetric pairs ( 𝔤 , 𝔨 ) considered by Sekiguchi, that d 𝒟 ( 𝔭 ) : d 𝒪 ( 𝔭 ) K = 0 = 𝒟 ( 𝔭 ) τ ( 𝔨 ) . An immediate consequence of this equality is the following result of Sekiguchi: Let ( 𝔤 0 , 𝔨 0 ) be a real form of one of these symmetric pairs ( 𝔤 , 𝔨 ) , and suppose that T is a K 0 -invariant...

Involution Matrix Algebras – Identities and Growth

Rashkova, Tsetska (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16R50, 16R10.The paper is a survey on involutions (anti-automorphisms of order two) of different kinds. Starting with the first systematic investigations on involutions of central simple algebras due to Albert the author emphasizes on their basic properties, the conditions on their existence and their correspondence with structural characteristics of the algebras. Focusing on matrix algebras a complete description of involutions of the first kind on Mn(F)...

Currently displaying 341 – 360 of 1097