Displaying 441 – 460 of 1097

Showing per page

Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra

Deng Yin Wang, Haishan Pan, Xuansheng Wang (2010)

Czechoslovak Mathematical Journal

Let 𝒫 be an arbitrary parabolic subalgebra of a simple associative F -algebra. The ideals of 𝒫 are determined completely; Each ideal of 𝒫 is shown to be generated by one element; Every non-linear invertible map on 𝒫 that preserves ideals is described in an explicit formula.

Nonlinear maps preserving Lie products on triangular algebras

Weiyan Yu (2016)

Special Matrices

In this paper we prove that every bijection preserving Lie products from a triangular algebra onto a normal triangular algebra is additive modulo centre. As an application, we described the form of bijections preserving Lie products on nest algebras and block upper triangular matrix algebras.

Non-singular covers over monoid rings

Ladislav Bican (2008)

Mathematica Bohemica

We shall introduce the class of strongly cancellative multiplicative monoids which contains the class of all totally ordered cancellative monoids and it is contained in the class of all cancellative monoids. If G is a strongly cancellative monoid such that h G G h for each h G and if R is a ring such that a R R a for each a R , then the class of all non-singular left R -modules is a cover class if and only if the class of all non-singular left R G -modules is a cover class. These two conditions are also equivalent whenever...

Non-singular covers over ordered monoid rings

Ladislav Bican (2006)

Mathematica Bohemica

Let G be a multiplicative monoid. If R G is a non-singular ring such that the class of all non-singular R G -modules is a cover class, then the class of all non-singular R -modules is a cover class. These two conditions are equivalent whenever G is a well-ordered cancellative monoid such that for all elements g , h G with g < h there is l G such that l g = h . For a totally ordered cancellative monoid the equalities Z ( R G ) = Z ( R ) G and σ ( R G ) = σ ( R ) G hold, σ being Goldie’s torsion theory.

Non-singular precovers over polynomial rings

Ladislav Bican (2006)

Commentationes Mathematicae Universitatis Carolinae

One of the results in my previous paper On torsionfree classes which are not precover classes, preprint, Corollary 3, states that for every hereditary torsion theory τ for the category R -mod with τ σ , σ being Goldie’s torsion theory, the class of all τ -torsionfree modules forms a (pre)cover class if and only if τ is of finite type. The purpose of this note is to show that all members of the countable set 𝔐 = { R , R / σ ( R ) , R [ x 1 , , x n ] , R [ x 1 , , x n ] / σ ( R [ x 1 , , x n ] ) , n < ω } of rings have the property that the class of all non-singular left modules forms a (pre)cover...

Odd H-depth and H-separable extensions

Lars Kadison (2012)

Open Mathematics

Let C n(A,B) be the relative Hochschild bar resolution groups of a subring B ⊆ A. The subring pair has right depth 2n if C n+1(A,B) is isomorphic to a direct summand of a multiple of C n(A,B) as A-B-bimodules; depth 2n + 1 if the same condition holds only as B-B-bimodules. It is then natural to ask what is defined if this same condition should hold as A-A-bimodules, the so-called H-depth 2n − 1 condition. In particular, the H-depth 1 condition coincides with A being an H-separable extension of B....

On a generalization of Q I -rings

Josef Jirásko (1999)

Commentationes Mathematicae Universitatis Carolinae

In this paper rings for which every s -torsion quasi-injective module is weakly s -divisible for a hereditary preradical s are characterized in terms of the properties of the corresponding lattice of the (hereditary) preradicals. In case of a stable torsion theory these rings coincide with T Q I -rings investigated by J. Ahsan and E. Enochs in [1]. Our aim was to generalize some results concerning Q I -rings obtained by J.S. Golan and S.R. L’opez-Permouth in [12]. A characterization of the Q I -property in the...

Currently displaying 441 – 460 of 1097