Über Ringe die von ihren Einheitengruppen erzeugt werden
Dans [8], les auteurs ont construit une résolution injective minimale d’un module instable dans la catégorie des modules instables modulo . A partir de cette résolution, un résultat de type conjecture de Segal a été obtenu pour un certain spectre de Thom. Le but de cet article est de refaire ces résultats pour les premiers impairs. Etant donné un premier impair , on construit dans ce travail un complexe de Koszul dans la catégorie des modules instables sur l’algèbre de Steenrod modulo . Une résolution...
We first define a new monoid construction (called unified-like product ) under a unified product and the Schützenberger product . We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for to be regular.
Let be a group algebra of a group over a field and the unit group of . It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group with order over any finite field of characteristic is established. We also characterize the structure of the unit group of over any finite field of characteristic and the structure of...
Let A be a finite abelian group and G = A x 〈b〉, b2 = 1, ab = a-1, ∀a ∈ A. We find generators up to finite index of the unitary subgroup of ZG. In fact, the generators are the bicyclic units. For an arbitrary group G, let B2(ZG) denote the group generated by the bicyclic units. We classify groups G such that B2(ZG) is unitary.
In [3], the authors initiated a technique of using affine representations to study the groups of units of integral group rings of crystallographic groups. In this paper, we use this approach for some special classes of crystallographic groups. For a first class of groups we obtain a normal complement for the group inside the group of normalized units. For a second class of groups we show that the Zassenhaus conjectures ZC1 and ZC3 are valid. This generalizes the results known for the infinite dihedral...
2000 Mathematics Subject Classification: 20C05, 16U60, 16S84, 15A33.The Structure of the Unit Group of the Group Algebra of the group D10 over any field of characteristic 5 is established in terms of split extensions of cyclic groups.