Displaying 81 – 100 of 1097

Showing per page

An extension of Zassenhaus' theorem on endomorphism rings

Manfred Dugas, Rüdiger Göbel (2007)

Fundamenta Mathematicae

Let R be a ring with identity such that R⁺, the additive group of R, is torsion-free. If there is some R-module M such that R M R ( = R ) and E n d ( M ) = R , we call R a Zassenhaus ring. Hans Zassenhaus showed in 1967 that whenever R⁺ is free of finite rank, then R is a Zassenhaus ring. We will show that if R⁺ is free of countable rank and each element of R is algebraic over ℚ, then R is a Zassenhaus ring. We will give an example showing that this restriction on R is needed. Moreover, we will show that a ring due to A....

An intermediate ring between a polynomial ring and a power series ring

M. Tamer Koşan, Tsiu-Kwen Lee, Yiqiang Zhou (2013)

Colloquium Mathematicae

Let R[x] and R[[x]] respectively denote the ring of polynomials and the ring of power series in one indeterminate x over a ring R. For an ideal I of R, denote by [R;I][x] the following subring of R[[x]]: [R;I][x]: = i 0 r i x i R [ [ x ] ] : ∃ 0 ≤ n∈ ℤ such that r i I , ∀ i ≥ n. The polynomial and power series rings over R are extreme cases where I = 0 or R, but there are ideals I such that neither R[x] nor R[[x]] is isomorphic to [R;I][x]. The results characterizing polynomial rings or power series rings with a certain ring...

A-Rings

Manfred Dugas, Shalom Feigelstock (2003)

Colloquium Mathematicae

A ring R is called an E-ring if every endomorphism of R⁺, the additive group of R, is multiplication on the left by an element of R. This is a well known notion in the theory of abelian groups. We want to change the "E" as in endomorphisms to an "A" as in automorphisms: We define a ring to be an A-ring if every automorphism of R⁺ is multiplication on the left by some element of R. We show that many torsion-free finite rank (tffr) A-rings are actually E-rings. While we have an example of a mixed...

Artin-Schelter regular algebras of dimension five

Gunnar Fløystad, Jon Eivind Vatne (2011)

Banach Center Publications

We show that there are exactly three types of Hilbert series of Artin-Schelter regular algebras of dimension five with two generators. One of these cases (the most extreme) may not be realized by an enveloping algebra of a graded Lie algebra. This is a new phenomenon compared to lower dimensions, where all resolution types may be realized by such enveloping algebras.

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .

Currently displaying 81 – 100 of 1097