An extension theorem and a new construction of Dickson near-fields. (Short Communications).
Let R[x] and R[[x]] respectively denote the ring of polynomials and the ring of power series in one indeterminate x over a ring R. For an ideal I of R, denote by [R;I][x] the following subring of R[[x]]: [R;I][x]: = : ∃ 0 ≤ n∈ ℤ such that , ∀ i ≥ n. The polynomial and power series rings over R are extreme cases where I = 0 or R, but there are ideals I such that neither R[x] nor R[[x]] is isomorphic to [R;I][x]. The results characterizing polynomial rings or power series rings with a certain ring...
A ring R is called an E-ring if every endomorphism of R⁺, the additive group of R, is multiplication on the left by an element of R. This is a well known notion in the theory of abelian groups. We want to change the "E" as in endomorphisms to an "A" as in automorphisms: We define a ring to be an A-ring if every automorphism of R⁺ is multiplication on the left by some element of R. We show that many torsion-free finite rank (tffr) A-rings are actually E-rings. While we have an example of a mixed...
We show that there are exactly three types of Hilbert series of Artin-Schelter regular algebras of dimension five with two generators. One of these cases (the most extreme) may not be realized by an enveloping algebra of a graded Lie algebra. This is a new phenomenon compared to lower dimensions, where all resolution types may be realized by such enveloping algebras.
Let be a finite abelian group of odd order, be its generalized dihedral group, i.e., the semidirect product of acting on by inverting elements, where is the cyclic group of order two. Let be the Burnside ring of , be the augmentation ideal of . Denote by and the th power of and the th consecutive quotient group , respectively. This paper provides an explicit -basis for and determines the isomorphism class of for each positive integer .