Displaying 41 – 60 of 98

Showing per page

First order calculi with values in right-universal bimodules

Andrzej Borowiec, Vladislav Kharchenko, Zbigniew Oziewicz (1997)

Banach Center Publications

The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

Generalized derivations on Lie ideals in prime rings

Basudeb Dhara, Sukhendu Kar, Sachhidananda Mondal (2015)

Czechoslovak Mathematical Journal

Let R be a prime ring with its Utumi ring of quotients U and extended centroid C . Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal of R such that F ( u ) [ F ( u ) , u ] n = 0 for all u L , where n 1 is a fixed integer. Then one of the following holds: ...

Left EM rings

Jongwook Baeck (2024)

Czechoslovak Mathematical Journal

Let R [ x ] be the polynomial ring over a ring R with unity. A polynomial f ( x ) R [ x ] is referred to as a left annihilating content polynomial (left ACP) if there exist an element r R and a polynomial g ( x ) R [ x ] such that f ( x ) = r g ( x ) and g ( x ) is not a right zero-divisor polynomial in R [ x ] . A ring R is referred to as left EM if each polynomial f ( x ) R [ x ] is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover,...

Lie ideals in prime Γ-rings with derivations

Nishteman N. Suliman, Abdul-Rahman H. Majeed (2013)

Discussiones Mathematicae - General Algebra and Applications

Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M. In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following (i) d(U)⊂ Z, (ii) d(U)⊂ U and d²(U)=0, (iii) d(U)⊂ U, d²(U)⊂ Z.

On a theorem of McCoy

Rajendra K. Sharma, Amit B. Singh (2024)

Mathematica Bohemica

We study McCoy’s theorem to the skew Hurwitz series ring ( HR , ω ) for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem of skew Hurwitz series.

On Jordan ideals and derivations in rings with involution

Lahcen Oukhtite (2010)

Commentationes Mathematicae Universitatis Carolinae

Let R be a 2 -torsion free * -prime ring, d a derivation which commutes with * and J a * -Jordan ideal and a subring of R . In this paper, it is shown that if either d acts as a homomorphism or as an anti-homomorphism on J , then d = 0 or J Z ( R ) . Furthermore, an example is given to demonstrate that the * -primeness hypothesis is not superfluous.

On McCoy condition and semicommutative rings

Mohamed Louzari (2013)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and σ an endomorphism of R . We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form R [ x ; σ ] . As a consequence, we will show some results on semicommutative and σ -skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.

Currently displaying 41 – 60 of 98