Closed normal subgroups in groups of units of compact rings.
We consider rings equipped with a closure operation defined in terms of a collection of commuting idempotents, generalising the idea of a topological closure operation defined on a ring of sets. We establish the basic properties of such rings, consider examples and construction methods, and then concentrate on rings which have a closure operation defined in terms of their lattice of central idempotents.
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).
Let be a -mixed abelian group and is a commutative perfect integral domain of . Then, the first main result is that the group of all normalized invertible elements is a -group if and only if is a -group. In particular, the second central result is that if is a -group, the -algebras isomorphism between the group algebras and for an arbitrary but fixed group implies is a -mixed abelian -group and even more that the high subgroups of and are isomorphic, namely, . Besides,...
Let be fixed integers. Suppose that is an associative ring with unity in which for each there exist polynomials such that . Then is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of and . Finally, commutativity of one sided s-unital ring is also obtained when satisfies some related ring properties.
In this paper we investigate commutativity of rings with unity satisfying any one of the properties: for some in and , in , where , , , , are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements and for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize...
Suppose that is an associative ring with identity , the Jacobson radical of , and the set of nilpotent elements of . Let be a fixed positive integer and an -torsion-free ring with identity . The main result of the present paper asserts that is commutative if satisfies both the conditions (i) for all and (ii) , for all . This result is also valid if (i) and (ii) are replaced by (i)
Let , and be fixed non-negative integers. In this note, it is shown that if is left (right) -unital ring satisfying (, respectively) where , then is commutative. Moreover, commutativity of is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.