On a certain identitiy satisfied by a derivation and an arbitrary additive mapping. (Summary).
Let be a prime ring, with no non-zero nil right ideal, a non-zero drivation of , a non-zero two-sided ideal of . If, for any , , there exists such that , then is commutative. As a consequence we extend the result to Lie ideals.
Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple -derivation on a Lie triple system is a -derivation.
Let be a -torsion free -prime ring, a derivation which commutes with and a -Jordan ideal and a subring of . In this paper, it is shown that if either acts as a homomorphism or as an anti-homomorphism on , then or . Furthermore, an example is given to demonstrate that the -primeness hypothesis is not superfluous.
Let be a -torsion free prime ring. Suppose that are automorphisms of . In the present paper it is established that if admits a nonzero Jordan left -derivation, then is commutative. Further, as an application of this resul it is shown that every Jordan left -derivation on is a left -derivation on . Finally, in case of an arbitrary prime ring it is proved that if admits a left -derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of , then ...
Let be a 2-torsion free prime ring and let be a Lie ideal of such that for all . In the present paper it is shown that if is an additive mappings of into itself satisfying for all , then for all .
Let k be a field. We prove that any polynomial ring over k is a Kadison algebra if and only if k is infinite. Moreover, we present some new examples of Kadison algebras and examples of algebras which are not Kadison algebras.
Let be a -prime left near-ring with multiplicative center , a -derivation on is defined to be an additive endomorphism satisfying the product rule for all , where and are automorphisms of . A nonempty subset of will be called a semigroup right ideal (resp. semigroup left ideal) if (resp. ) and if is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let be a