Generalized derivations acting on multilinear polynomials in prime rings
We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.
Let be a prime ring with its Utumi ring of quotients and extended centroid . Suppose that is a generalized derivation of and is a noncentral Lie ideal of such that for all , where is a fixed integer. Then one of the following holds:
Let be a prime ring and a nonzero ideal of The purpose of this paper is to classify generalized derivations of satisfying some algebraic identities with power values on More precisely, we consider two generalized derivations and of satisfying one of the following identities:
Let be the triangular algebra consisting of unital algebras and over a commutative ring with identity and be a unital -bimodule. An additive subgroup of is said to be a Lie ideal of if . A non-central square closed Lie ideal of is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on , every generalized Jordan triple higher derivation of into is a generalized higher derivation of into .
In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk. J. Math. 30 (2006), 403–411). We show that if is a triangular algebra, then every generalized Jordan derivation of above type from into itself is a generalized derivation.
Let be a prime ring with center and a nonzero right ideal of . Suppose that admits a generalized reverse derivation such that . In the present paper, we shall prove that if one of the following conditions holds: (i) , (ii) , (iii) , (iv) , (v) , (vi) for all , then is commutative.