Page 1

Displaying 1 – 3 of 3

Showing per page

f -derivations on rings and modules

Paul E. Bland (2006)

Commentationes Mathematicae Universitatis Carolinae

If τ is a hereditary torsion theory on 𝐌𝐨𝐝 R and Q τ : 𝐌𝐨𝐝 R 𝐌𝐨𝐝 R is the localization functor, then we show that every f -derivation d : M N has a unique extension to an f τ -derivation d τ : Q τ ( M ) Q τ ( N ) when τ is a differential torsion theory on 𝐌𝐨𝐝 R . Dually, it is shown that if τ is cohereditary and C τ : 𝐌𝐨𝐝 R 𝐌𝐨𝐝 R is the colocalization functor, then every f -derivation d : M N can be lifted uniquely to an f τ -derivation d τ : C τ ( M ) C τ ( N ) .

First order calculi with values in right-universal bimodules

Andrzej Borowiec, Vladislav Kharchenko, Zbigniew Oziewicz (1997)

Banach Center Publications

The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

Free actions on semiprime rings

Muhammad Anwar Chaudhry, Mohammad S. Samman (2008)

Mathematica Bohemica

We identify some situations where mappings related to left centralizers, derivations and generalized ( α , β ) -derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation T , of a semiprime ring R the mapping ψ R R defined by ψ ( x ) = T ( x ) x - x T ( x ) for all x R is a free action. We also show that for a generalized ( α , β ) -derivation F of a semiprime ring R , with associated ( α , β ) -derivation d , a dependent element a of F is also a dependent element of α + d . Furthermore, we prove that for a centralizer f and...

Currently displaying 1 – 3 of 3

Page 1